SYNTHESIS OF COMPOUNDS RELATED TO 2,6-DIALKYLPHENYLHYDRAZINES

Alžbeta KrutošíkovÅ ${ }^{a}$, Miloslava DandÁrovía and Václav KoneČnýb
${ }^{a}$ Department of Organic Chemistry, Slovak Technical University, 81237 Bratislava
${ }^{\text {b }}$ Research Institute of Chemical Technology, 83106 Bratislava

Received April 6, 1990
Accepted May 3, 1990

Abstract

2,6-Dialkylphenylhydrazines were the starting materials for the synthesis of 2,3 -dichloro- and 2,3-dibromo-4-($2^{\prime}, 6^{\prime}$-dialkylphenylhydrazino)butenoic acids Ia-If and 3-($2^{\prime}, 6^{\prime}$-dialkylphenylhydrazinocarbonyl)propionic acids IIIa-IIIc. Compounds IIIa-IIIc cyclized to give 2-(2,6--dialkylphenyl)-2,3-dihydropyridazine-3,6-diones Va-Vc. Chloro-, bromo- and dichloromaleic anhydride reacted with the starting hydrazines to furnish N - ($2^{\prime}, 6^{\prime}$-dialkylphenylamino) maleimides IVa-IVi. N-((2,2,2-Trichloro-1-formylamino)ethyl)-2,6-dialkylphenylhydrazines VIa-VIc, obtained from the starting hydrazines and N -(1,2,2,2-tetrachloroethyl)formamide together with other products were tested as pesticides.

Several patents ${ }^{1-8}$ appearing in the last 15 years utilized 2,6-dialkylphenylhydrazines ${ }^{9,10}$ and especially 2,6 -dimethylphenylhydrazine for the synthesis of fungicidally active substances. The latter was also employed ${ }^{11}$ for an interesting synthesis of 3-amino-1,3-thiazolidinediones, hypnotically active thiazolines ${ }^{12,13}$ and derivatives of 5-pyrazolecarboxylic acid having a sedative, hypnotic and myorelaxation effects. 2,6-Dimethylphenylhydrazonium chloride was also reported ${ }^{14}$ to react with phenyl ketones to yield substituted pyrazoles utilizable as scintillators and fluorescent bleachers avoiding yellowing of synthetic fibres.

2,6-Dialkyphenylhydrazines also served for preparation of substituted 1,2,4--triazole derivatives ${ }^{15}$, indolylformazanes, indolylazetidinones and tetrazolium salts ${ }^{16}$. 2,6-Dialkylphenylhydrazones undergo new rearrangements ${ }^{10,17-19}$; the action of weak oxidation reagents on 2,6-dimethylphenylhydrazine and its derivatives was investigated ${ }^{20-22}$ as well.

This paper describes reactions of 2,3-dichloro-4-oxobutenoic acid with 2,6-dialkylphenylhydrazines. Results of this reaction depended on reaction conditions. Thus, in an aqueous medium the above-mentioned acid and its bromo analogue reacted with 2,6-dialkyphenylhydrazinium chlorides to deposit hydrazones Ia-If (Table I). This acid reacted analogously with phenylhydrazinium chloride ${ }^{23}$. 2-Ethyl-6-methylphenylhydrazinium chloride on treatment with 4-oxo-2,3-dichloro-2-butenoic acid
in acid (HCl) medium afforded substituted 2,3-dihydropyridazine-3-one (II). Dialkylphenylhydrazines and maleic anhydride, chloro-, bromo- and dichloromaleic anhydride furnished various products. In benzene, maleic anhydride reacted with the starting 2,6-dialkylphenylhydrazines to give 3-(2', 6^{\prime}-dialkylhydrazinocarbonyl)propenoic acids IIIa-IIIc, which cyclized in acetic anhydride in the presence of sodium acetate under formation of substituted 2,3-dihydropyridazine-3,6-diones

	R^{1}	R^{2}	X
la	CH_{3}	CH_{3}	Cl
if	CH_{3}	$\mathrm{C}_{2} \mathrm{H}_{5}$	Cl
Ic	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	Cl
Id	CH_{3}	CH_{3}	Br
le	CH_{3}	$\mathrm{C}_{2} \mathrm{H}_{5}$	Br
If	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	Br

$$
\begin{aligned}
& \text { III } a, R^{\prime}=R^{2}=C H_{3} \\
& \text { III }, R^{\prime}=C H_{3} ; R^{2}=C_{2} H_{5} \\
& \text { IIIc, } R^{\prime}=R^{2}=C_{2} H_{5}
\end{aligned}
$$

II

$$
\begin{aligned}
& \text { VIa, } R^{\prime}=R^{2}=C H_{3} \\
& \text { VIb, } R^{\prime}=C H_{3} ; R^{2}=C_{2} H_{5} \\
& \text { VIc, } R^{\prime}=R^{2}=C_{2} H_{5}
\end{aligned}
$$

Table I
Characteristic data of compounds $I-V I$

Compound	Formula (M.w.)	$\begin{aligned} & \text { M.p., }{ }^{\circ} \mathrm{C} \\ & \text { Yiel, } \% \end{aligned}$	Calculated/Found			
			\% C	\% C	\% H	\% Hal
$I a$	$\underset{(287 \cdot 1)}{\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}}$	$\begin{gathered} 142-144 \\ 72 \end{gathered}$	$\begin{aligned} & 50 \cdot 20 \\ & 50 \cdot 65 \end{aligned}$	$\begin{aligned} & 4 \cdot 21 \\ & 4 \cdot 21 \end{aligned}$	$\begin{aligned} & 9.75 \\ & 9.75 \end{aligned}$	$\begin{aligned} & 24 \cdot 69 \\ & 24 \cdot 22 \end{aligned}$
$I b$	$\begin{gathered} \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \\ (301 \cdot 1) \end{gathered}$	$\begin{gathered} 126-127 \\ 76 \end{gathered}$	$\begin{aligned} & 51 \cdot 85 \\ & 51.62 \end{aligned}$	$\begin{aligned} & 4 \cdot 68 \\ & 4 \cdot 32 \end{aligned}$	$\begin{aligned} & 9 \cdot 30 \\ & 9 \cdot 60 \end{aligned}$	$\begin{aligned} & 23 \cdot 54 \\ & 23 \cdot 16 \end{aligned}$
$I{ }^{\text {c }}$	$\begin{gathered} \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \\ (315 \cdot 2) \end{gathered}$	$\begin{gathered} 126-128 \\ 74 \end{gathered}$	$\begin{aligned} & 53 \cdot 35 \\ & 53 \cdot 20 \end{aligned}$	$\begin{aligned} & 5 \cdot 11 \\ & 4 \cdot 92 \end{aligned}$	$\begin{aligned} & 8.89 \\ & 8.46 \end{aligned}$	$\begin{aligned} & 22 \cdot 50 \\ & 22 \cdot 69 \end{aligned}$
Id	$\begin{gathered} \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \\ (376 \cdot 0) \end{gathered}$	$\begin{gathered} 107-109 \\ 77 \end{gathered}$	$\begin{aligned} & 38 \cdot 33 \\ & 38 \cdot 32 \end{aligned}$	$\begin{aligned} & 3 \cdot 21 \\ & 3.42 \end{aligned}$	$\begin{aligned} & 7 \cdot 45 \\ & 7 \cdot 15 \end{aligned}$	$\begin{aligned} & 42 \cdot 50 \\ & 41 \cdot 98 \end{aligned}$
Ie	$\begin{gathered} \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \\ (390 \cdot 1) \end{gathered}$	$\begin{gathered} 84-90 \\ 80 \end{gathered}$	$\begin{aligned} & 40 \cdot 03 \\ & 40 \cdot 16 \end{aligned}$	$\begin{aligned} & 3.61 \\ & 3.72 \end{aligned}$	$\begin{aligned} & 7 \cdot 18 \\ & 7 \cdot 14 \end{aligned}$	$\begin{aligned} & 40 \cdot 97 \\ & 40 \cdot 86 \end{aligned}$
If	$\underset{(404 \cdot 1)}{\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}}$	$\begin{gathered} 118-119 \\ 76 \end{gathered}$	$\begin{aligned} & 41 \cdot 61 \\ & 41 \cdot 19 \end{aligned}$	$\begin{aligned} & 3.99 \\ & 3.96 \end{aligned}$	$\begin{aligned} & 6 \cdot 94 \\ & 6 \cdot 89 \end{aligned}$	$\begin{aligned} & 39 \cdot 55 \\ & 39 \cdot 12 \end{aligned}$
IIIa	$\begin{gathered} \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \\ (234 \cdot 2) \end{gathered}$	$\begin{gathered} 145-150 \\ 68 \end{gathered}$	$\begin{aligned} & 61 \cdot 54 \\ & 61 \cdot 26 \end{aligned}$	$\begin{aligned} & 6 \cdot 02 \\ & 5 \cdot 98 \end{aligned}$	$\begin{aligned} & 11 \cdot 96 \\ & 12 \cdot 16 \end{aligned}$	
IIIb	$\begin{gathered} \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \\ (248 \cdot 2) \end{gathered}$	$\begin{gathered} 122-126 \\ 72 \end{gathered}$	$\begin{aligned} & 62 \cdot 91 \\ & 62 \cdot 76 \end{aligned}$	$\begin{aligned} & 6 \cdot 49 \\ & 6 \cdot 56 \end{aligned}$	$\begin{aligned} & 11 \cdot 28 \\ & 11 \cdot 40 \end{aligned}$	
IIIC	$\begin{gathered} \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \\ (262 \cdot 3) \end{gathered}$	$\begin{gathered} 133-135 \\ 76 \end{gathered}$	$\begin{aligned} & 64 \cdot 11 \\ & 64 \cdot 18 \end{aligned}$	$\begin{aligned} & 6.94 \\ & 6.56 \end{aligned}$	$\begin{aligned} & 10 \cdot 68 \\ & 10 \cdot 28 \end{aligned}$	
$I V a$	$\begin{gathered} \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}_{2} \\ (295 \cdot 1) \end{gathered}$	$\begin{gathered} 138-139 \\ 69 \end{gathered}$	$\begin{aligned} & 48 \cdot 84 \\ & 49 \cdot 22 \end{aligned}$	$\begin{aligned} & 3.75 \\ & 3.79 \end{aligned}$	$\begin{aligned} & 9 \cdot 49 \\ & 9 \cdot 59 \end{aligned}$	$\begin{aligned} & 27 \cdot 01 \\ & 26 \cdot 90 \end{aligned}$
II b	$\begin{gathered} \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2} \\ (309 \cdot 1) \end{gathered}$	$\begin{gathered} 66-69 \\ 68 \end{gathered}$	$\begin{aligned} & 50 \cdot 52 \\ & 50 \cdot 16 \end{aligned}$	$\begin{aligned} & 4 \cdot 21 \\ & 4 \cdot 01 \end{aligned}$	$\begin{aligned} & 9 \cdot 06 \\ & 9 \cdot 17 \end{aligned}$	$\begin{aligned} & 25 \cdot 85 \\ & 25 \cdot 60 \end{aligned}$
11%	$\begin{gathered} \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}_{2} \\ (323 \cdot 2) \end{gathered}$	$\begin{gathered} 79-81 \\ 66 \end{gathered}$	$\begin{aligned} & 52.03 \\ & 53.03 \end{aligned}$	$\begin{aligned} & 4 \cdot 68 \\ & 4 \cdot 46 \end{aligned}$	$\begin{aligned} & 8.67 \\ & 8.42 \end{aligned}$	$\begin{aligned} & 24 \cdot 72 \\ & 23 \cdot 98 \end{aligned}$
IId	$\begin{gathered} \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \\ (285 \cdot 1) \end{gathered}$	$\begin{gathered} 134-135 \\ 90 \end{gathered}$	$\begin{aligned} & 50 \cdot 55 \\ & 49 \cdot 90 \end{aligned}$	$\begin{aligned} & 3 \cdot 53 \\ & 3 \cdot 57 \end{aligned}$	$\begin{aligned} & 9.82 \\ & 9.77 \end{aligned}$	$\begin{aligned} & 24 \cdot 87 \\ & 24 \cdot 90 \end{aligned}$
Ile	$\underset{(299 \cdot 1)}{\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}}$	$\begin{gathered} 112-113 \\ 92 \end{gathered}$	$\begin{aligned} & 52 \cdot 19 \\ & 52 \cdot 15 \end{aligned}$	$\begin{aligned} & 4 \cdot 04 \\ & 3 \cdot 80 \end{aligned}$	$\begin{aligned} & 9 \cdot 36 \\ & 9 \cdot 30 \end{aligned}$	$\begin{aligned} & 23 \cdot 70 \\ & 23 \cdot 60 \end{aligned}$
IIf	$\begin{gathered} \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \\ (313 \cdot 2) \end{gathered}$	$\begin{aligned} & 115 \\ & 89 \end{aligned}$	$\begin{aligned} & 53 \cdot 69 \\ & 53 \cdot 50 \end{aligned}$	$\begin{aligned} & 4 \cdot 50 \\ & 4 \cdot 40 \end{aligned}$	$\begin{aligned} & 8.94 \\ & 8.92 \end{aligned}$	$\begin{aligned} & 22 \cdot 69 \\ & 22 \cdot 56 \end{aligned}$
$1 \cdot 1$	$\begin{gathered} \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \\ (216 \cdot 2) \end{gathered}$	$\begin{array}{r} 71 \\ 82 \end{array}$	$\begin{aligned} & 66 \cdot 65 \\ & 67 \cdot 19 \end{aligned}$	$\begin{aligned} & 5 \cdot 59 \\ & 5 \cdot 59 \end{aligned}$	$\begin{aligned} & 12.95 \\ & 13.31 \end{aligned}$	
$V b$	$\begin{gathered} \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \\ (230 \cdot 2) \end{gathered}$	$\begin{gathered} 57-59 \\ 80 \end{gathered}$	$\begin{aligned} & 67 \cdot 81 \\ & 67 \cdot 60 \end{aligned}$	$\begin{aligned} & 6 \cdot 12 \\ & 6 \cdot 19 \end{aligned}$	$\begin{aligned} & 12 \cdot 16 \\ & 12 \cdot 42 \end{aligned}$	

Table I
(Continued)

| Com-
 pound | Formula
 (M.w.) | M.p., ${ }^{\circ} \mathrm{C}$
 Yield, $\%$ | | Calculated/Found | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

$V a-V c$. N -(2', 6^{\prime}-Dialkylamino)bromomaleimides $I V a-I V c$ and their dichloro analogues $I V d-I V f$ were obtained by reacting 2,6-dialkylphenylhydrazines with the corresponding halogenated maleic anhydrides in benzene.

As known, N -(2,2,2-trichloro-1-formylamino)ethyl residue is embodied in commercial fungicides (Triforine ${ }^{24}$ and Trimorphamide ${ }^{25}$); compounds VIa-VIc, characterized by this feature were synthesized from N -(1,2,2,2-trichloroethyl)formamide and 2,6-dialkylphenylhydrazines.

The structure of the synthesized compounds was verified by ${ }^{1} \mathrm{H}$ NMR spectral data (Tables II $-V$). The infrared spectra were indicative of carbonyl absorption bands appearing at $1680 \mathrm{~cm}^{-1}$ (Ia-If), $1750 \mathrm{~cm}^{-1}$ (IIIa-IIIc), $1738 \mathrm{~cm}^{-1}$ (IVa-IVc) and 1720-1725 $\mathrm{cm}^{-1}(V a-V c)$. These products were tested as potential pesticides by standard methods for fungicide ${ }^{26}$ and herbicide ${ }^{27}$ activities, but none of them achieved properties of the references.

EXPERIMENTAL

The ${ }^{1} \mathrm{H}$ NMR spectra were measured at 80 MHz in deuteroacetone, tetramethylsilane being the internal reference. The infrared spectra were recorded on a Specord 71 IR spectrometer in chloroform.

2,6-Dialkylphenylhydrazinium chlorides were prepared according to literature ${ }^{9,10} ; 2,6$-dialkylphenylhydrazines were freed from their crystalline salts with sodium hydroxide.

2.3-Dichloro-4-(2', 6^{\prime}-dimethylphenylhydrazono)butenoic Acid (Ia)

2,6-Dimethylphenylhydrazinium chloride ($1.7 \mathrm{~g}, 10 \mathrm{mmol}$) in water (50 ml) was added to a stirred solution of 4-oxo-2,3-dichloro-2-butenoic acid ($1.7 \mathrm{~g}, 10 \mathrm{mmol}$) in water (350 ml) at $20^{\circ} \mathrm{C}$. After

Table II
${ }^{1} \mathrm{H}$ NMR data (δ, ppm) for compounds I and $I I I$

Compound ${ }^{\text {a }}$	$\mathrm{H}-2^{\text {b }}$	H-3	H-4	H-arom	R^{1}	R^{2}
Ia	-	\rightarrow	8.57 s	7.08 bs	2.35 s	2.35 s
Ib	-	-	8.46 s	7.06 bs	2.27 s	$\begin{aligned} & 2.70 \mathrm{~s} \\ & 1.15 \mathrm{t} \end{aligned}$
Ic	-	-	8.50 s	$7 \cdot 12 \mathrm{bs}$	$\begin{aligned} & 2 \cdot 70 \mathrm{q} \\ & 1.16 \mathrm{f} \end{aligned}$	$\begin{aligned} & 2.70 \mathrm{q} \\ & 1.16 \mathrm{f} \end{aligned}$
Id	-	-	8.20 s	7.00 bs	2.30 s	2.30 s
Ie	-	-	8.21 s	7.06 bs	2.30 s	$\begin{aligned} & 2.70 \mathrm{q} \\ & 1.15 \end{aligned}$
If	-	-	8.20 s	7.09 bs	$\begin{aligned} & 2.67 \mathrm{q} \\ & 1.12 \mathrm{t} \end{aligned}$	$\begin{aligned} & 2.67 \mathrm{q} \end{aligned}$
IIIa	6.57 d	6.30 d	-	6.97 bs	2.37 s	2.37 s
IIIb	6.55 d	6.28 d	-	7.02 bs	2.37 s	$\begin{aligned} & 2.80 q \\ & 1.20 \mathrm{t} \end{aligned}$
IIIc	6.55 d	6.28 d	-	7.05 bs	$\begin{aligned} & 2.80 \mathrm{q} \\ & 1.20 \mathrm{t} \end{aligned}$	$\begin{aligned} & 2.80 \mathrm{q} \\ & 1.20 \mathrm{t} \end{aligned}$

${ }^{a}$ For Ia-If: COOH and NH protons showed broad signals at ppm 9.25-9.68 and 8.62-9.68, for IIIIa-IIIc: $10.00 \mathrm{bs}, 1 \mathrm{H}(\mathrm{COOH}) ; 7.00 \mathrm{bs}, 1 \mathrm{H}(\mathrm{NH}) .{ }^{b} J(2,3)=13.0 \mathrm{~Hz}$.

Table III
${ }^{1} \mathrm{H}$ NMR data (δ, ppm) for compounds $I V$

Compound	H-3	H-arom	R^{1}	R^{2}	NH
IVa	$7 \cdot 19$ s	6.90 bs	2.27 s	2.27 s	6.57 bs
IVb	7.16 s	6.93 bs	2.25 s	$\begin{aligned} & 2.73 \mathrm{q} \\ & 1.12 \mathrm{t} \end{aligned}$	6.61 bs
IVc	7.20 s	7.00 bs	$\begin{aligned} & 2.62 \mathrm{q} \\ & 1.13 \mathrm{t} \end{aligned}$	$\begin{aligned} & 2.62 \mathrm{q} \\ & 1.13 \mathrm{t} \end{aligned}$	6.60 bs
IVd	-	6.95 bs	2.30 s	2.30 s	6.62 bs
IVe	-	6.96 bs	2.30 s	$\begin{gathered} 2.62 \mathrm{q} \\ 1.15 \mathrm{t} \end{gathered}$	6.70 bs
IVf	-	7.02 bs	$\begin{aligned} & 2.77 \mathrm{q} \\ & 1.15 \mathrm{t} \end{aligned}$	$\begin{aligned} & 2.77 \mathrm{q} \\ & 1.15 \mathrm{t} \end{aligned}$	6.72 bs

3 h -stirring at this temperature the separated precipitate was filtered off, washed with water ether and dried at $40^{\circ} \mathrm{C}$.

Compounds $I b$ and $I c$ were prepared in the same way and compounds $I d-I f$ by employing 4-oxo-2,3-dibromo-2-butenoic acid.

2-12'-Elhyl-6'-mothylphenyl)-4,5-dichloro-2,3-dihydropyridazin-3-one (II)
Concentrated hydrochloric acid (10 ml) and 4-oxo-2,3-dichloro-2-butenoic acid ($3.4 \mathrm{~g}, 20 \mathrm{mmol}$) were added to a solution of 2-ethyl-6-methylphenylhydrazinium chloride ($5.6 \mathrm{~g}, 20 \mathrm{mmol}$) with stirring, which continued at $90^{\circ} \mathrm{C}$ for 2 h . The mixture was cooled and the crystalline product was filtered off; yield of II $5.3 \mathrm{~g}\left(94 \%\right.$), m.p. $121 \cdot 5^{\circ} \mathrm{C}$ (toluene). For $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$ (283.3) calculated: $55.11 \% \mathrm{C}, 4.27 \% \mathrm{H}, 25.03 \% \mathrm{Cl}, 9.94 \% \mathrm{~N}$; found: $54.98 \% \mathrm{C}, 4.28 \% \mathrm{H}, 24.96 \% \mathrm{Cl}$, $9.90 \% \mathrm{~N} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 7.92 \mathrm{~s}, 1 \mathrm{H}(\mathrm{H}-6) ; 7.23 \mathrm{~m}, 3 \mathrm{H}(\mathrm{H}$-arom $) ; 2.05 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) ; 2.36 \mathrm{q}$, $2 \mathrm{H}\left(\mathrm{CH}_{2}\right) ; 1 \cdot 11 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$.

Table IV
${ }^{1} \mathrm{H}$ NMR data (δ, ppm) for compounds V

Compound	$\mathrm{H}-4^{a}$	$\mathrm{H}-5$	H -arom	R^{1}	R^{2}	NH
$V a$	6.41 d	7.50 d	7.02 bs	2.35 s	2.35 s	8.68 bs
$V b$	6.32 d	7.49 d	7.04 bs	2.31 s	2.63 q	8.53 bs
					1.16 t	
$l c$	6.32 d	7.48 d	7.09 bs	2.73 q	2.73 q	8.53 bs
				1.15 t	1.15 t	

${ }^{a} J(4,5)=5 \cdot 5 \mathrm{~Hz}$.

Table V
${ }^{1} \mathrm{H}$ NMR data (δ, ppm) for compounds $V I$

Com- pound	$\mathrm{CH=O}$	CH	H -arom	R^{1}	R^{2}	NH^{a}	NH^{b}
$V I a$	8.47 s	5.50 t	6.87 bs	2.31 s	2.31 s	8.00 bs	4.78 bs
$V I b$	8.47 s	5.56 t	6.91 bs	2.33 s	2.77 q	8.00 bs	4.80 bs
VIc	8.50 s	5.53 t	6.91 bs	2.82 q 1.17 t	2.82 q 1.17 t	8.06 bs	4.80 bs

[^0]3-(2',6'-Dimethylphenylhydrazinocarbonyl)propenoic Acid (IIIa)
2,6-Dimethylphenylhydrazine $(2.7 \mathrm{~g}, 20 \mathrm{mmol})$ in benzene $(10 \mathrm{ml})$ was added to maleic anhydride $(2.0 \mathrm{~g}, 20 \mathrm{mmol})$ dissolved in benzene $(20 \mathrm{ml})$. The mixture was refluxed for 1 h , cooled and the separated precipitate was filtered off. Compounds IIIb and IIIC were prepared by the same procedure.

N -(2', 6^{\prime}-Dimethylphenylamino)bromomaleimide (IVa)
2.6-Dimethylphenylhydrazine $(2.7 \mathrm{~g}, 20 \mathrm{mmol})$ in benzene $(10 \mathrm{ml})$ was added to a solution of bromomaleic anhydride $(3.5 \mathrm{~g}, 20 \mathrm{mmol})$ in benzene (40 ml). The mixture was refluxed, the reaction water was removed, the solvent was distilled off under reduced pressure and the residue was crystallized from ethanol. Compounds $I V b$ and $I V c$ were prepared analogously.

Compounds IVd-IVf were synthesized from dichloromaleic anhydride in the same way.

2-(2', 6^{\prime}-Dimethylphenyl)-2,3-dihydropyridazine-3,6-dione (Va)
A mixture consisting of IIIa ($4.6 \mathrm{~g}, 20 \mathrm{mmol}$), anhydrous sodium acetate (0.8 g) and acetic anhydride (20 ml) was stirred at $60^{\circ} \mathrm{C}$ for 30 min , poured on crushed ice, the precipitate was filtered off and crystallized from ethanol. Compounds $V b$ and $V e$ were synthesized by the same procedure.
$\mathrm{N}-[(2,2,2$-Trichloro-1-formylamino)ethyl]-2,6-dimsthylphenylhydrazine (VIa)
N -(1,2,2,2-tetrachloroethyl)formamide ($3 \cdot 16 \mathrm{~g}, 15 \mathrm{mmol}$) in benzene (20 ml) was added to a suspension of 2,6-dimethylphenylhydrazine ($2 \cdot 04 \mathrm{~g}, 15 \mathrm{mmol}$) and sodium carbonate ($2 \cdot 1 \mathrm{~g}, 20 \mathrm{mmol}$) in benzene (15 ml) with stirring at room temperature. After 2 h the mixture was filtered and the solution was concentrated to a half of its volume. The precipitate was filtered off and crystallized from tetrachloromethane. Compounds VIb and VIc were prepared by an analogous procedure.

REFERENCES

1. Fr. Demande 2463132 (1979); Chem. Abstr. 95, 220071 (1981).
2. Fr. Demande 2499079 (1981); Chem. Abstr. 98, 53868 (1983).
3. Fr. Demande 2499568 (1981); Chem. Abstr. 98, 53869 (1983).
4. Fr. Demande 2499074 (1981); Chem. Abstr. 98, 53442 (1983).
5. Fr. Demande 2491464 (1980); Chem. Abstr. 97, 127295 (1982).
6. Ger. Offen 3.033161 (1979); Chem. Abstr. 95, 62166 (1981).
7. Rom. 81676 (1981); Chem. Abstr. 101, 151830 (1984).
8. Japan Kokai 6016,964 (1983); Chem. Abstr. 102, 203751 (1985).
9. Carlin R. B., Carlson D. P.: J. Am. Chem. Soc. 81, 4673 (1959).
10. Miller B., Matjeka E. R.: J. Am. Chem. Soc. 102, 4772 (1980).
11. Mizuno T., Nishiguchi I., Hirashima T.: Chem. Express, 1, 415 (1986); Chem. Abstr. 106, 213809 (1987).
12. Ger. Offen 2457309 (1973); Chem. Abstr. 83, 114380 (1975).
13. Hung Teljes 27601 (1980); Chem. Abstr. 100, 185792 (1984).
14. Ger. Offen 2531495 (1975); Chem. Abstr. 87, 70149 (1977).
15. Reiter J., Somorai T., Jerkovich Gy., Dvortsak P.: J. Heterocycl. Chem. 19, 1157 (1982).
16. Singh S., Sharma M., Gupta G. P., Shanker K.: Indian J. Chem., B 23, 989 (1984); Chem. Abstr. 102, 6334 (1984).
17. Fusco R., Sannicolo F.: J. Org. Chem. 46, 83 (1981).
18. Fusco R., Sannicolo F.: J. Org. Chem. 46, 90 (1981).
19. Fusco R., Sannicolo F.: J. Org. Chem. 47, 1691 (1982).
20. Barton D. H. R., Lester D. J., Ley S. V.: J. Chem. Soc., Perkin Trans. 1, 1980, 1212.
21. Barton D. H. R., Ley S. V., Meerholz C. A.: J. Chem. Soc., Chem. Commun. 1979, 755.
22. Ley S. V., Meerholz C. A., Barton D. H. R.: Tetrahedron Suppl. 1981, 218.
23. Koně̌ný V., Ková Š.: Chem. Zvesti 39, 395 (1983).
24. Ger (G.D.R.) 115840 (1975); Chem. Abstr. 82, 107514 (1975).
25. Vrabel V., Paveľ̌ík F., Kellö E., Miertuš S., Konečný V., Lokaj J.: Collect. Czech. Chem. Commun. 50, 1619 (1984).
26. Koně̌ný V., Ková̌ Š., Varkonda Š.: Chem. Zvesti 38, 239 (1984).
27. Furdík M., Konečný V., Šály A., Truchlík S.: Acta Fac. Rerum Nat. Univ. Comenianae (Chimia) 12, 45 (1968).

Translated by Z. Votický.

[^0]: ${ }^{a}$ Signal $1 \mathrm{H} ;{ }^{b}$ signal 2 H .

